Social Sequence Analysis

Social sequence analysis includes a diverse and rapidly growing body of methods that social scientists have developed to help study complex ordered social processes, including chains of transitions, trajectories, and other ordered phenomena. Social sequence analysis is not limited by content or time scale and can be used in many different fields, including sociology, communication, information science, and psychology. *Social Sequence Analysis* aims to bring together both foundational and recent theoretical and methodological work on social sequences from the last thirty years. A unique reference book for a new generation of social scientists, this book will aid demographers who study life-course trajectories and family histories, sociologists who study career paths or work/family schedules, communication scholars and micro-sociologists who study conversation, interaction structures, and small-group dynamics, as well as social epidemiologists.

Benjamin Cornwell is an associate professor of sociology at Cornell University. He received his PhD in sociology at the University of Chicago. His research has been published in journals such as *American Journal of Sociology, American Sociological Review*, and *Social Forces*. His work has been covered in many media outlets, including CNN, the *New York Times*, MSNBC, and the *Los Angeles Times*. In 2012, he taught one of the first graduate courses on social sequence analysis in the United States at Cornell. Cambridge University Press 978-1-107-10250-7 - Social Sequence Analysis: Methods and Applications Benjamin Cornwell Frontmatter More information

Structural Analysis in the Social Sciences

Mark Granovetter, editor

The series Structural Analysis in the Social Sciences presents studies that analyze social behavior and institutions by reference to relations among such concrete social entities as persons, organizations, and nations. Relational analysis contrasts on the one hand with reductionist methodological individualism and on the other with macro-level determinism, whether based on technology, material conditions, economic conflict, adaptive evolution, or functional imperatives. In this more intellectually flexible structural middle ground, analysts situate actors and their relations in a variety of contexts. Since the series began in 1987, its authors have variously focused on small groups, history, culture, politics, kinship, aesthetics, economics, and complex organizations, creatively theorizing how these shape and in turn are shaped by social relations. Their style and methods have ranged widely, from intense, long-term ethnographic observation to highly abstract mathematical models. Their disciplinary affiliations have included history, anthropology, sociology, political science, business, economics, mathematics, and computer science. Some have made explicit use of social network analysis, including many of the cutting-edge and standard works of that approach, whereas others have kept formal analysis in the background and used "networks" as a fruitful orienting metaphor. All have in common a sophisticated and revealing approach that forcefully illuminates our complex social world.

Recent Books in the Series

- 1. Mark S. Mizruchi and Michael Schwartz, eds., Intercorporate Relations: The Structural Analysis of Business
- 2. Barry Wellmann and S. D. Berkowitz, eds., Social Structures: A Network Approach
- 3. Ronald L. Brieger, ed., Social Mobility and Social Structure
- 4. David Knoke, Political Networks: The Structural Perspective
- 5. John L. Campbell, J. Rogers Hollingsworth, and Leon N. Lindberg, eds., *Governance of the American Economy*
- 6. Kyriakos M. Kontopoulos, The Logics of Social Structure
- 7. Philippa Pattison, Algebraic Models for Social Structure
- 8. Stanley Wasserman and Katherine Faust, Social Network Analysis: Methods and Applications
- 9. Gary Herrigel, Industrial Constructions: The Sources of German Industrial Power
- 10. Philippe Bourgois, In Search of Respect: Selling Crack in El Barrio
- 11. Per Hage and Frank Harary, Island Networks: Communication, Kinship, and Classification Structures in Oceana
- 12. Thomas Schweitzer and Douglas R. White, eds., *Kinship*, *Networks*, *and Exchange*
- 13. Noah E. Friedkin, A Structural Theory of Social Influence
- 14. David Wank, Commodifying Communism: Business, Trust, and Politics in a Chinese City
- 15. Rebecca Adams and Graham Allan, Placing Friendship in Context
- 16. Robert L. Nelson and William P. Bridges, Legalizing Gender Inequality: Courts, Markets and Unequal Pay for Women in America

(continued after index)

Cambridge University Press 978-1-107-10250-7 - Social Sequence Analysis: Methods and Applications Benjamin Cornwell Frontmatter More information

Social Sequence Analysis

Methods and Applications

BENJAMIN CORNWELL Cornell University

CAMBRIDGE UNIVERSITY PRESS

32 Avenue of the Americas, New York, NY 10013-2473, USA

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781107500549

© Benjamin Cornwell 2015

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2015

Printed in the United States of America

A catalog record for this publication is available from the British Library.

Library of Congress Cataloging in Publication Data Cornwell, Benjamin.

Social sequence analysis : methods and applications / Benjamin Cornwell. pages cm. – (Structural analysis in the social sciences)

Includes bibliographical references and index. ISBN 978-1-107-10250-7 (hardback) – ISBN 978-1-107-50054-9 (paperback) 1. Social sciences – Methodology. I. Title. H61.C657 2015

300.72-dc23 2015009547

ISBN 978-1-107-10250-7 Hardback ISBN 978-1-107-50054-9 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet Web sites referred to in this publication and does not guarantee that any content on such Web sites is, or will remain, accurate or appropriate.

Contents

	List List Prefa Ackt	of Figures of Tables ace nowledgments	<i>page</i> xii xv xvii xix
PA	RT I.	INTRODUCTION	
1	Sequ	ence Analysis in the Social Sciences	3
	1.1	Timing and Context of the Book	4
	1.2	Contributions	7
	1.3	Audience and Scope	9
	1.4	Related References	14
	1.5	Plan of the Book	16
PA	RT II.	THEORETICAL BACKGROUND	
2	Theo	pretical Foundations of Social Sequence Analysis	21
	2.1	What Are Social Sequences?	21
	2.2	The Structural Origins of Social Sequences	22
	2.3	Why Social Sequences Matter	25
	2.4	Origins of Social Sequence Analysis Techniques	32
		2.4.1 Narrative Positivism	33
		2.4.2 The Relational Nature of Social Phenomena	36
		2.4.3 The Development of Whole-Sequence	
		Analysis Methods	38
		2.4.4 Pivotal Criticisms	41
	2.5	The Second Wave of Social Sequence Analysis	45
		2.5.1 Sequences as Networks	46
		2.5.2 Microsequence Analysis	52
	2.6	Looking Ahead	55

viii Contents

PA AN	RT III D TE	I. SOCIAL SEQUENCE ANALYSIS CONCEPTS Chnioues	
3	Sea	ience Analysis Concepts and Data	.59
	3.1	Sequence Properties	59
		3.1.1 Positions	60
		3.1.2 Elements	60
		3.1.3 Substructures	61
		3.1.4 Subjects	62
	3.2	Key Issues in Sequence Data	62
		3.2.1 Recurrence	63
		3.2.2 Ties and Multidimensionality	65
		3.2.3 Gaps	66
	3.3	The Sequence Universe	67
		3.3.1 Size	67
		3.3.2 Boundary Specification	69
	3.4	Sequence Data	70
		3.4.1 Data Collection	70
		3.4.2 Element-Position Sampling	73
		3.4.3 Units of Measure	74
	3.5	Data Used in This Book	75
		3.5.1 The Survey of Health, Ageing, and Retirement	
		in Europe (SHARE)	75
		3.5.2 The Correlates of War Global Trade Network	76
		3.5.3 The Davis, Gardner, and Gardner Deep	
		South <i>Study</i>	78
		3.5.4 The Multinational Time Use Study (MTUS)	79
		3.5.5 The American Time Use Survey (ATUS)	80
4	Dete	ecting Sequence Structure	83
	4.1	Descriptive Analysis	83
		4.1.1 Sequence Length	84
		4.1.2 Element Frequencies	84
		4.1.3 n-grams	85
		4.1.4 Position Reports	85
	4.2	Describing Stochastic Patterns	86
		4.2.1 Transition Matrices	86
		4.2.2 Markov Chains	91
	4.3	Sequential Connection	91
		4.3.1 Empirical Illustration: Gender Differences	
		in the Parenthood-Stress Link	93
	4.4	Stationarity	94
		4.4.1 Empirical Illustration: Stationarity in the	
		World System	96
	4.5	Spells	97

5

	Contents	ix
4.6	Homogeneity	98
4.7	On Using Summary Statistics and Tests	99
4.8	Visual Aids	100
	4.8.1 Transition Bubble Graphs	100
	4.8.2 State Transition Diagrams	101
	4.8.3 Sequence Index Plots	102
	4.8.4 State Distribution Graphs	104
	4.8.5 Tempograms	104
	4.8.6 Sequence-Network Diagrams	105
	4.8.7 On the Use of Color and Grayscale	105
4.9	Looking Ahead	108
Who	ble-Sequence Comparison Methods	109
5.1	Sequence Alignment	110
	5.1.1 Sequence Alignment Operations	110
	5.1.2 Operation Costs and Distance	111
5.2	Classical Optimal Matching (OM)	111
	5.2.1 Finding the Optimal Solution	113
	5.2.2 The Needleman–Wunsch Algorithm	114
5.3	Basic Operation Cost Regimes	115
	5.3.1 Levenshtein Distance	115
	5.3.2 Levenshtein II Distance	115
	5.3.3 Hamming Distance	116
5.4	Considerations in Setting Operation Costs	116
	5.4.1 Order versus Timing	116
	5.4.2 Time Warping	118
5.5	Criticisms of Classical OM	119
	5.5.1 Theory/Method Fit	120
	5.5.2 Arbitrary Operation Costs	120
5.6	Improvements on Classical OM	122
	5.6.1 Variable Substitution Costs	122
	5.6.2 Distance Normalization	124
	5.6.3 Reference Sequence Comparison	125
	5.6.4 Spell-Adjusted Distances	126
	5.6.5 The Dynamic Hamming Method	127
5.7	Detecting Whole Sequence Patterns	129
	5.7.1 Hierarchical Cluster Analysis	130
	5.7.2 Identifying Sequence Classes	133
	5.7.3 Assessing Validity and Reliability	136
	5.7.4 Describing Sequence Classes	139
5.8	Recent Advances in Sequence Comparison	143
	5.8.1 Multidimensional Sequence Analysis	144
	5.8.2 Two-Stage Optimal Matching (2SOM) Analysis	146
	5.8.3 Transition Sequence Analysis	147

x Contents

		5.8.4 Nonalignment Techniques	148
		5.8.5 Beyond Cluster Analysis	150
PAF	RT IV.	NEW DIRECTIONS IN SOCIAL SEQUENCE	
AN	ALYSI	s	
6	Netv	vork Methods for Sequence Analysis	155
	6.1	Theoretical Rationale	156
		6.1.1 Networks of Seauences	156
		6.1.2 Sequences as Bases of Affiliations	160
	6.2	Network Concepts and Terms	163
		6.2.1 Network Matrices and Components	163
		6.2.2 Directed and Undirected Networks	164
		6.2.3 One- and Two-Mode Networks	165
		6.2.4 Subject Comembership and Element Overlap	165
	6.3	Sequence-Network Construction	167
		6.3.1 Nonrecurrent Sequence Networks	167
		6.3.2 Recurrent Sequence Affiliation Networks	170
		6.3.3 Directed Sequence Networks	171
		6.3.4 Multidimensional Sequence Networks	172
	6.4	Visualization	172
		6.4.1 Relationships among Subjects	173
		6.4.2 Two-Mode Ordered Event Networks	174
		6.4.3 Two-Mode Recurrent Sequences	176
		6.4.4 Directed Sequence Networks	179
	6.5	Structural Measures for Sequence Networks	184
	6.6	Identification of Subject/Element Subsets	189
		6.6.1 Subsets in Sequence Affiliation Networks	190
		6.6.2 Element Subsets in Directed Sequence Networks	193
		6.6.3 Sequence Motifs	195
	6.7	Event Structure Analysis	196
	6.8	Statistical Network Models for Sequential Events	200
		6.8.1 Exponential Random Graph (p*) Models	200
		6.8.2 ERGMs for Ordered Nonrecurrent Sequence	
		Networks	201
	6.9	Dynamic Sequence Networks	202
		6.9.1 Subject- and Element-Level Change	203
		6.9.2 Sequence Subset Evolution	206
		6.9.3 Whole Sequence-Network Evolution	207
	6.10	Conclusion	209
7	Soci	al Microsequence Analysis	210
	7.1	An Exemplary Sequence Context	211
	7.2	The Elements of Social Microsequences	214
		7.2.1 Relationship to Microinteraction Seauences	215
		r	

		Contents	xi
		7.2.2 Elements and Positions	215
		7.2.3 Data Collection and Availability	216
	7.3	Nonnetwork Sequence Approaches	217
		7.3.1 OM Sequence Classification	220
		7.3.2 Transition and Switching Analysis	222
	7.4	Sequence-Network Approaches	226
		7.4.1 Synchrony	227
		7.4.2 Measurement of Synchrony	230
		7.4.3 Identifying Sources of Synchrony	238
		7.4.4 Routine	241
		7.4.5 Measurement and Visualization of Routine	244
	7.5	Next Steps	251
РА	RT V.	CONCLUSIONS	
8	The	Promise of Social Sequence Analysis	255
	8.1	Limitations	256
	8.2	Future Research	257
		8.2.1 Routine and Routinization	257
		8.2.2 Sequence Networks, Network Sequences	258
		8.2.3 Sequential Statistical Inference	259
		8.2.4 Data Collection	261
	Appendix A Recent Whole-Sequence Pattern Analyses Appendix B Linkage Criteria for Agglomerative		263
	Ĥ	lierarchical Clustering	270
	Refe	erences	275
	Ind	ex	303

Figures

o read this book	page 12
ency state transition matrix (N)	87
bility state transition matrix (P)	88
ency state transition matrix for SHARELIFE life data	90
bility state transition matrix for SHARELIFE life data	90
tion bubble graph showing probabilities of me life-course transitions among SHARELIFE potents $(N = 2.191)$	101
(10 - 2, 191)	101
onships among first-time life-course events among ELIFE respondents ($N = 2,191$)	102
nce index plot showing the number of $ELIFE$ respondents ($N = 2,191$) who reported	
encing first-time life-course events in different	103
distribution graph showing the percent of ELIFE respondents ($N = 2,191$) reporting a given	105
it at each sequence position	105
4.7 in grayscale	106
cale sequence index plot of life event sequences Figure 4.9 stretched vertically	107
ency state transition matrix for world-system	123
ogram for hierarchical clustering of 42 unique system-position sequences from 129 countries	
en 1967 and 2006	133
	to read this book ency state transition matrix (N) bility state transition matrix (P) ency state transition matrix for SHARELIFE life data bility state transition matrix for SHARELIFE life data tion bubble graph showing probabilities of me life-course transitions among SHARELIFE idents ($N = 2,191$) transition diagram graph showing sequential onships among first-time life-course events among ELIFE respondents ($N = 2,191$) nce index plot showing the number of ELIFE respondents ($N = 2,191$) who reported encing first-time life-course events in different ice orders distribution graph showing the percent of ELIFE respondents ($N = 2,191$) reporting a given it at each sequence position nce index plot of life event sequences from 4.7 in grayscale cale sequence index plot of life event sequences Figure 4.9 stretched vertically ency state transition matrix for world-system ons togram for hierarchical clustering of 42 unique system-position sequences from 129 countries en 1967 and 2006

xii

	Figures	xiii
5.3	Line graph showing the relationship between the number of clusters at given dissimilarity thresholds in the hierarchical clustering of world-system-position sequences	135
5.4	Tempograms showing the proportions of workers who were working at specific time points throughout the day in five weekday clusters, based on analysis of data on 8,997 individuals from the 2008–2010 American Time	141
5.5	Sequence index plots showing sequences of the 129 countries in each of the five world-system-position	141
6.1	Narrative network showing the structure of the identity	143
()	history of a Nazi	159
6.2	different events, as reported in the <i>Deep South</i> study	168
6.3	Comembership matrix (N) showing overlap between women with respect to involvement in different events in the <i>Deep South</i> study	169
6.4	Network showing the strengths of relationships among the women in the Davis, Gardner, and Gardner <i>Deep</i>	107
	South study	174
6.5	Bipartite network showing which events were attended	175
6.6	By which of the women in the <i>Deep South</i> study	1/3
6.8 6.7	Two-mode sequence network depicting activity sequences	1//
6.8	of two parents and their two children between 5 P.M. and midnight on a Wednesday evening in October 2000 Annotated directed activity sequence network for two parents and their two children between 5 P.M. and	178
()	midnight on a Wednesday evening in October 2000	180
6.9	sequences of a U.K. family	182
6.10	Colorized variable-path-width depiction of the activity	102
6.11	Directed activity sequence network for two parents and their two children between 5 P.M. and midnight on a Wednesday evening in October 2000 with	185
6.12	time-equivalent position-elements tiled along the <i>x</i> -axis Overview of useful structural measures for two-mode	184
612	sequence networks	186
0.13	sequence networks	187

xiv Figures

6.14	Affiliation matrix (A) from the <i>Deep South</i> study,	
	rearranged to indicate block membership	192
6.15	Event structure analysis (ESA) diagram showing	
	connections among elements of the labor struggle in	
	the meatpacking industry during the Reagan era	199
6.16	Evolution of a firm's investment network	204
6.17	Three-hour-long snapshots of a U.K. family's two-mode	
	sequence network, 5:00–8:00 P.M.	206
7.1	Annotated microsequence diagram showing how one	
	woman spent the day on a Monday in May 2011	219
7.2	Tempograms showing the percent of respondents in	
	the 2003–2011 ATUS who reported different types of	
	contact at each 5-minute interval between 6 A.M. and	
	midnight, shown separately for each of five clusters	
	(N = 2.853)	221
7.3	Transition probability matrix showing switches between	
	different types of social contacts in a single workday	
	among working mothers in the 2003–2011 ATUS	
	(N = 4,658)	226
7.4	Transition probability matrix showing switches	
	between different types of social contacts in a single	
	workday among working fathers in the 2003–2011	
	ATUS $(N = 6,752)$	226
7.5	The position of work activity throughout the day in the	
	Spanish Daily Sequence Network	237
7.6	Annotated sequence motif illustrating points of	
	synchrony in Spain in 2003 (uncommon transitions not	
	shown)	240
7.7	Histogram showing distribution of average degree	
	of routine (in minutes) between pairs of weekdays	
	among respondents in the 2005 Time Use Survey of the	
	Netherlands ($N = 1,807$)	250
B.1	The types of relationships between cases that are	
	considered given different linkage criteria for merging	
	separate clusters in hierarchical clustering	271

Tables

4.1	Transition matrices showing frequency of transition from having first child to experiencing first period of	
	major stress among parents in the SHARELIFE data	page 93
4.2	Transition matrices showing movement within	
	the world system between 1967–1986 and 1987–2006	96
5.1	The relationship between the operation cost regime	
	and the emphasis on features being used as a basis for	
	sequence comparison	118
5.2	Country membership in the five world-system clusters	144
7.1	Extent of interpersonal and generalized synchrony	
	in individuals' activity sequences as reported in the	
	2002-2003 Spanish Time Use Survey (in minutes and	
	percent), by socio demographic characteristics	
	(N = 20, 136)	234
7.2	Extent of routine in individuals' activity sequences	
	as reported in the 2005 Time Use Survey of the	
	Netherlands (in minutes and percent), by socio	
	demographic characteristics ($N = 1,807$)	249
A.1	Studies that have analyzed whole-sequence patterns	
	using OM and other methods since 2000	264
	5	

Cambridge University Press 978-1-107-10250-7 - Social Sequence Analysis: Methods and Applications Benjamin Cornwell Frontmatter More information

Preface

During a routine literature search a few years ago, I stumbled onto a prickly set of articles in a 2000 special issue of the journal *Sociological Methods* & *Research*. I was seeking methodological guidance for an analysis of the association between individuals' stress levels and their frequency of switching between social roles and contexts. Several of the articles seemed generally relevant to what I was trying to do, so I looked at the entire issue. As I read on, I noticed that there was a measure of antagonism among some of the issue's authors. This in itself is not unusual, as methodological debates are common in the social sciences and can lead to conflict (escalating, in some cases, to near vehicular assault in campus parking lots). Nothing so serious was going on in the case of this special issue. But the contributors were using markedly spirited terms – such as "trivial" and "silly" – to characterize each other's contributions. The subject of this particular debate was sequence analysis.

In the research that I had done to that point, I had never used the kinds of sequence analysis methods that were being discussed in that special issue – in particular, optimal matching. But I have long been fascinated by complex dynamic social processes, so the idea of learning more about how to detect general patterns in such processes appealed to me. My methodological training in graduate school focused primarily on multivariate analysis and social network techniques, and it seemed that these would not take me where I wanted to go with my new research. (I turned out to be only half wrong about that.) I broadened my literature search, and soon discovered numerous alternative approaches that are concerned with assessing the timing and order of social phenomena. They all shared a concern with sequencing. And yet, much of that work avoided the language of sequence analysis. As the pile of relevant references on the desk in my study grew taller, I became increasingly annoyed by the fact that I could not find a single source that tied all of this work together. So,

xviii Preface

I decided to write this book, both as a methodological reference and as a unifying conceptual framework.

This is a timely book. The growth of sequence-oriented approaches within the social sciences over the past few decades has been steady but slow. But from where I stand, it is apparent that things are about to change. The social sciences have entered a period that will likely be known in retrospect both for the sudden availability of massive streams of complex, real-time social data and for the challenge of making sense of them. The rise of computational social science, the accessibility of dynamic data, an increasing focus on real-time events and time use, and major improvements in analytic technologies call for methods that can make intuitive sense of detailed sequential data.

Perhaps even more importantly, these developments highlight the urgent need for a coherent conceptual framework that can serve larger theories about ordered social processes. The social sciences are full of well-theorized but seldom-tested ideas about the structural causes and consequences of the ordering of social events. Talcott Parsons's grand theory of a social system in which action is predictably coordinated via an interlocking set of social roles is one example. Another is Anthony Giddens's theory that everyday routine is crucial for maintaining individuals' sense of continuity and ontological security in an otherwise fast-paced world. There are many other prominent examples, some of which are addressed in the second chapter of this book. I believe that the best conceptual framework for moving these ideas forward can be found at the intersection of social network analysis and sequence analysis. This book provides the foundation for such a framework.

Acknowledgments

This book has benefited inestimably from the encouragement and insights of many generous friends and colleagues. I will begin with those who had the most direct role in bringing this book to the light of publication. First, I owe a great debt to Robert Dreesen, senior commissioning editor at Cambridge University Press, for seeing the potential of this idea and encouraging me to pursue it as a book project. Mark Granovetter, editor of the Structural Analysis in the Social Science series, shepherded the book through the drafting and revision processes and provided indispensible feedback that shaped the book along the way. This book was only possible due to their highly responsive support, expertise, and good cheer. I also thank Brianda Reyes for providing able editorial assistance throughout the production process.

Cornell University has been an ideal setting for the development of this project. For one, because Cornell is rife with network researchers, there is a constant demand here for fresh and interesting network-related ideas. The basic notion of studying sequences as networks has met with great enthusiasm. Cornell also provided substantial institutional support. I am grateful to Cornell's Institute for the Social Sciences, in conjunction with the Department of Sociology, for funding my leave from teaching in the spring semester of 2013, during which the initial draft of this book was written. The opportunity to offer a new graduate course on social sequence analysis at Cornell also benefited this project tremendously by providing me with the impetus to develop and refine many of the ideas that are presented here. The course was first offered in spring 2012 at Cornell University, attended by Rachel Behler, Chris Cameron, Dan DellaPosta, Michael Genkin, Ningzi Li, Noona Oh, Kelly Lee Patterson, Victoria Sosik, and Dana Warmsley. Their critical engagement with the material and our discussions about potential applications had an immeasurable impact on my approach to this subject. Dan DellaPosta also provided valuable research assistance later,

xix

xx Acknowledgments

including tracking down references to empirical examples of whole sequence comparison techniques.

In many ways, this book has its roots in the Department of Sociology at the University of Chicago. As my advisor, mentor, and now close friend, Ed Laumann has nurtured in me an appreciation for the dynamic properties of social structure. He has continued to challenge me to think about and model these in terms of networks. Many of the new contributions of this book reflect his influence on me as a scholar. Obviously, the very topic of this book owes much to Andy Abbott and his decades of work in bringing sequence analysis to the social sciences. Throughout the development of this manuscript, Andy has been gracious in discussing sequence analysis methods themselves and in providing advice about some potential references and contacts.

My engagement with the topic of microsequences specifically was partly inspired by the work of Jay Gershuny, Director of the Centre for Time Use Research (CTUR) at the University of Oxford. He and his colleagues – including Kimberly Fisher, Teresa Harms, and Oriel Sullivan – graciously hosted me at the CTUR at St. Hugh's College in the fall of 2014. That was the beginning of what is sure to be a fruitful collaboration. This part of the book also benefited from the comments and suggestions of Matt Brashears, Tom Buchanan, Jessica Collett, Karen Danna-Lynch, Ed Lawler, Michael Macy, Brian Rubineau, Jeremy Schulz, and participants at the Perspectives on Time Use in the U.S. Conference at the U.S. Bureau of Labor Statistics in Washington, DC, in June 2014; the annual meeting of the American Sociological Association in Atlanta, Georgia in 2010; and the Cornell Population Program seminar series in March 2010.

A variety of colleagues played important roles in the development of this book by talking through sundry sequence-related ideas, helping me to recognize the theoretical and methodological scope of the work, and pointing me to related lines of research. At Cornell, Richard Swedberg humored me by engaging in discussions about the deeper theoretical relevance of sequential social phenomena, such as in the work of Talcott Parsons. Steve Morgan saw promise in this idea early on and arranged my initial introduction to Cambridge University Press. I am also grateful to Jim Moody for first introducing me to network analysis in general and the idea of narrative networks in my first year as a graduate student, more than a decade ago. Other scholars who discussed aspects of this work, responded to queries, supplied data, or otherwise engaged in exchanges about sequence analysis include Jason Beckfield, Cliff Brown, John Brueggemann, Chris Marcum, and Kate Stovel. The anonymous reviewers of the manuscript draft also made many wise suggestions that improved this book.

Acknowledgments

xxi

Finally, I could not have done this without the understanding and patience of those closest to me. My extended family unwittingly did a great service simply by forcing me to explain my ideas to them in plain language. I am also particularly grateful to my wife, Erin York Cornwell, who provided infinite support and advice. Her influence on this work has been immense, and is absorbed into nearly every passage of this book. Erin provides the ultimate combination of wisdom, companionship, and inspiration. I cannot imagine getting through such an undertaking as this without knowing that there is someone like her, and our Watson, nearby.